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An analytical model of gravity currents
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An analytical solution to the nonlinear equations of motion and thermodynamic
energy for gravity currents propagating in stable atmosphere is found. This solution
differs from the previous analytical studies in several aspects. In our solution the
head of the gravity current is a strong vortex and the dynamics are non-hydrostatic.
The solution has two regimes: (i) a supercritical regime when the Froude number
Fr = (c−U)/Na is larger than 1 – in this case the cold front is local; (ii) a subcritical
regime when Fr is smaller than 1. Here, ahead of the front there is a disturbance
of nonlinear gravity waves. The scale of the wave and its amplitude increase as the
Froude number decreases.

We found that the square of the speed of the gravity current (relative to the
synoptic wind) is proportional to the mean drop of potential temperature over the
front area times the front height a. The constant of proportionality is function of the
environmental conditions. The thermal, velocity and vorticity fields can be described
by non-dimensional structure functions of two numbers: pa = 1/Fr and ka. The
amplitude of the structure functions is proportional to (c − U)2/a for the thermal
field, to (c−U) for the velocity field, and to (c−U)/a for the vorticity field.

The propagation is studied in terms of the vorticity equation. The horizontal
gradient of the buoyancy term always tends to propagate the cold front. The nonlinear
advection term in most of the cases investigated here tends to slow the propagation
of the gravity current. The propagation of the disturbance of nonlinear gravity waves
ahead of the front in regime (ii) in most of the cases is due to the buoyancy term.
The nonlinear advection term tends to slow the propagation when the synoptic wind
blows in the direction opposite to that of the front propagation, and increase the
propagation when the synoptic wind blows in the direction of propagation.

1. Introduction
Many examples of gravity currents of cold air moving into warmer air observed

in the atmosphere, called cold fronts, have been observed, see for example Pearson
(1973), Simpson, Mansfield & Milford (1977), Atkinson (1981), and Haase (1991).
The scale of these fronts is about 1 km. In these cold fronts the Earth’s rotation is
negligible while the non-hydrostatic dynamics is important. In the following we shall
discuss fronts of this kind and not the synoptic-scale fronts. Cold fronts moving in
a neutral atmosphere have been observed and studied extensively in recent years, see
for example Haase & Smith (1989a, b), Xu (1992), Xu, Xue & Droegemeier (1996)
and Liu & Moncrieff (1996). Most of those model studies are numerical owing to the
nonlinear nature of the problem. An analytical attempt to study different stages of
the evolution of a density current can be found in Benjamin (1968). He obtained an
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expression for the speed of the gravity current which is proportional to the density
jump across the front and to the front’s height.

Feliks (1988) solved analytically the nonlinear equation of motion and the ther-
modynamic energy equation in a neutral environment for the case of a steady,
propagating front. The front has a complicated flow with very strong vertical veloci-
ties of up to several metres per second. The wind in the lower part of the front has
a strong convergence and there is a return current (associated with the strong diver-
gence obtained) in the upper part of the front. Such a front resembles the sea breeze
front. The horizontal gradient of the buoyancy tends to propagate the front, whereas
the nonlinear advection terms in most of the cases tend to slow this propagation.

Crook & Miller (1985) and Haase & Smith (1989b) studied numerically the evo-
lution of a cold front propagating into a stable environment, where above the stable
layer the atmosphere stability was assumed to be neutral. They found two regimes in
the solution: subcritical and supercritical. The subcritical regime is defined as when
the disturbance of gravity waves (in the free atmosphere outside the front) initiated by
the translation of the gravity current (cold front) propagates a considerable distance
ahead of the front. This disturbance can take the form of a solitary wave, or an
undular bore. The supercritical regime is defined as when the propagation speed of
the disturbance is less than the speed of the gravity current. In this case the front can
be considered as local.

Liu & Moncrieff (1996) studied analytically the density current propagation in
stratified, sheared fluids. Their results show that stable stratification decreases the
depth of the density current and increases the propagation speed. Their result differs
sharply from the solution of Benjamin (1988) in which the propagation speed is
proportional to the depth. In their studies they assumed that the flow in the cold
front was motionless relative to the moving front. Moreover the role of gravity waves
and their interaction with the gravity current to form an undular bore in a strongly
stratified atmosphere and its influence on the speed of the gravity current were not
included in their study. Thus their result may change significantly when those effects
are included.

In the following we solved analytically the equations of inviscid motion and
thermodynamic energy in a stable atmosphere, as in Feliks (1988). This solution
enables us to study in detail the parameters which influence the front structure, its
propagation speed, and the causes of its propagation. The solution described in this
paper and that of Feliks (1988) differ from the previous analytical solutions of gravity
currents in several aspects. Here the shape of the front is prescribed, and the density
and velocity are determined by the solution and are continuous on the interface; only
their derivative is discontinuous. In previous studies the density is prescribed, the
shape of the front and the velocity are determined by the solution, and the velocity
and density are discontinuous on the interface. In our solution there is intensive
circulation with strong vorticity inside the gravity current and the dynamics is non-
hydrostatic. Such circulation has been observed in the atmospheric gravity currents.
In almost all the previous studies the flow inside the gravity current is motionless
(in a relative frame of reference) so the effect of the dynamics is excluded and the
hydrostatic approximation is used to determine the internal pressure on the interface.
The exception is the study of Xu & Moncrieff (1994) where circulation in the gravity
head was considered. Since the vorticity in their study was constant, the propagation
of the head does not depend on the circulation in the head. In our solution the
vorticity in the head is not constant and the propagation of the gravity current
depends on the vorticity structure, as will be shown in § 5.
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2. Formulation of the problem
We deal with fronts which are limited to the lower atmosphere; hence their heights

are much smaller than the scale height of the atmosphere. This allows us to use the
Boussinesq incompressible approximation of the equations of motion:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρm

∂P

∂x
, (2.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρm

∂P

∂z
− ρg

ρm
, (2.2)

∂u

∂x
+
∂w

∂z
= 0. (2.3)

Here u = u′+U,U is the undisturbed wind speed ahead of the front and we will refer
to it as the synoptic wind speed; u′ and w are the perturbation velocity components,
ρm is a mean reference density, and P and ρ are the perturbation pressure and density.
For simplicity the Coriolis force and viscosity effects are ignored (Haase & Smith,
1989a, b; Feliks 1988).

The thermodynamic energy equation is

∂σ

∂t
+ u

∂σ

∂x
+ w

∂σ

∂z
= 0. (2.4)

Here σ = σ′ + N2z, N2 = (g/θm)∂θ̄/∂z is the Brunt–Väisälä frequency of the atmo-
sphere, θm and θ̄ are the mean and reference potential temperature and

σ =
ρg

ρm
=
gθ

θm
(2.5)

is the buoyancy force; θ is the potential temperature perturbation from its value at
the lower boundary.

As the fluid is incompressible a streamfunction will be introduced, where

u = −∂ψ
∂z
, w =

∂ψ

∂x
. (2.6)

Cross-differention of (2.1) and (2.2) will eliminate the pressure, leading to the vorticity
equation

∂ζ

∂t
+ u

∂ζ

∂x
+ w

∂ζ

∂z
=
∂σ

∂x
, (2.7)

ζ =
∂w

∂x
− ∂u

∂z
= ∇2ψ. (2.8)

To solve analytically the above nonlinear equations we assume that the speed of the
front is constant and the front maintains its structure.

The transformation of the x-coordinate to the (s = x − ct)-coordinate, where c is
the front speed, enables us to eliminate the time derivative from equations (2.4) and
(2.7), i.e.

J(ψ + cz, ζ)− ∂σ

∂s
= 0, (2.9)

J(ψ + cz, σ) = 0, (2.10)

where J is the Jacobian operator.
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Figure 1. Diagram of the frontal region in the moving coordinates (s, z). The shaded quarter of
circle on the left-hand side represents the frontal area whose radius is a. The undisturbed potential
temperature profile is shown on the right-hand side.

In figure 1, a diagram of the frontal region in the moving coordinate system is
shown. We look for a solution to (2.9) and (2.10) in the region z > 0, s > 0. This
solution has to fulfil the following boundary conditions: (i) w = o on z = 0, and (ii)
for the horizontal velocity, u, a free-slip condition is assumed. The disturbance tends
to zero as

x→∞, i.e. u→ U,w → 0,

ψ → −Uz and
∂σ

∂z
→ N2. (2.11)

On the front boundary r = a (figure 1), ψ + cz = 0. This indicates that there is no
mass flux through the front boundary. On this boundary ψ, u, w, and σ are continuous.
Because the Jacobian in (2.10) vanishes, there is an arbitrary functional dependence
between ψ + cz and σ. Assume this function is piecewise-linear, i.e.

σ = γI (ψ + cz), r < a,

σ = γE(ψ + cz), r > a.

}
(2.12a)

According to (2.4) the isolines of the buoyancy, σ, coincide with the streamlines,
ψ + cz, due to the assumption of adiabatic flow in our model. In (2.12a) γI and γE
(γI,E below) are coefficients of proportionality between the streamlines, ψ + cz and
the buoyancy isolines inside and outside the density current. A further interpretation
of γI and γE can be obtained by differentiating (2.12a) with respect to x; we obtain

∂σ

∂x
= γI,E

∂

∂x
(ψ + cz) = γI,Ew, (2.12b)

i.e. increasing the horizontal gradient of the streamlines by w results in increasing the
horizontal gradient of the buoyancy by γI,Ew. This gradient generates vorticity at a
rate γI,E w (see (2.7)). In our inviscid model the tilting of the buoyancy surfaces is the
only source generating vorticity.

In (2.12a) the transition from one portion of the broken line to another is a function
of the distance r from the coordinate origin, rather than the value of the argument
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ψ + cz. Thus a has to be chosen in the following manner:

ψ + cz < 0, r < a,

ψ + cz > 0, r > a.

}
(2.13)

This condition also ensures continuity of the buoyancy, σ, as we move from one
portion of the broken line to another. The other choice ψ + cz > 0 (when r < a)
leads to weak horizontal winds in the front since u = −∂ψ/∂z < c. We note that
the shape of the front as given by the curve ψ + cz = 0 is an assumption of the
theory to make the problem mathematically tractable. Near the stagnation point this
front, has an angle of 90◦ between the frontal interface and the horizontal plane. In
previous analytical solutions (Benjamin 1968; Xu 1992; Liu & Moncrieff 1996; Xu et
al. 1996) the angle at the stagnation point is 60◦. This difference in the angle at the
stagnation point between our solution and the previous solutions can be attributed
to the differences in the properties of the solutions. In our solution, pressure and its
first derivative, and velocity and density are continuous at the interface while in the
previous solutions only the pressure is continuous. In our solution there is intensive
circulation with strong vorticity inside the gravity current and the dynamics is non-
hydrostatic. In the previous studies the flow inside the gravity current is motionless
(in a relative frame of reference) so the effect of the dynamics is excluded. Thus the
hydrostatic approximation is valid and so the pressure on the interface from inside the
front is determined. The study of Xu & Moncrieff (1994) considers circulation in the
head with constant vorticity. Their analysis shows that the circulation in the gravity
current does not influence the propagation. This conclusion can be derived directly
from the vorticity equation (2.7) since the nonlinear advection terms are zero when
the vorticity is constant. We also note that Jirka & Arita (1987) showed that a 60◦
angle is obtained when the vorticity on both sides of the front is zero or constant, as
is the case in the previous studies. But for more complicated vorticity structure near
the stagnation point the angle can be larger than 60◦ and the propagation depends
on the vorticity structure in the gravity current head, as will be shown in § 5. In the
solution of Jirka & Arita (1987) the vorticity is singular at the stagnation point and
so it is valid only for viscid flow. In our solution the vorticity is not singular, even at
the stagnation point.

Substituting (2.11) into (2.12a) gives

σ → γE(c−U)z = N2z as s→∞. (2.14)

Because N2 > 0 and c−U > 0, we find

γE > 0. (2.15)

Then substituting (2.12) and (2.9) we obtain

J(ψ + cz, ζ − γIz) = 0, r < a,

J(ψ + cz, ζ − γEz) = 0, r > a.

}
(2.16)

Since the Jacobian in (2.16) vanishes there is an arbitrary functional dependence
between ψ + cz and

ζ − γIz, r < a,

ζ − γEz, r > a,
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assuming this function is piecewise-linear, i.e.

∇2ψ − γIz = −k2(ψ + cz), r < a,

∇2ψ − γEz = ±p2(ψ + cz), r > a.

}
(2.17)

According to (2.16) the isolines of the potential vorticity, ζ − γIz, coincide with
the streamlines ψ + cz. The parameters −k2 and p2 are coefficients of proportionality
between the potential vorticity and the streamlines inside and outside the gravity
current. The change of the vorticity, ∇2ψ, of a moving particle (along a streamline) is
due to its vertical displacement. As the particle moves upward a distance z it gains
vorticity γI,Ez (inside and outside the front), since ascent in a stratified environment
causes tilting of the buoyancy surfaces, as shown above in (2.12b). The sign of p2

in (2.17) is determined as follows: as s → ∞, ∇2ψ → 0 and ψ → −Uz, thus (2.17)
becomes

−γE = ±p2(c−U) as s→∞. (2.18)

Since γE > 0, c−U > 0 only the negative sign is admitted, i.e.

γE

p2
= c−U. (2.19a)

From (2.14) and (2.19a) we find

p2 =
N2

(c−U)2
. (2.19b)

Thus

Fr =
1

pa
=
c−U
Na

(2.19c)

can be considered the Froude number of the problem. For a constant Froude number,
increasing the front height, a, or the atmosphere stability, N, results in an increase in
the front speed relative to the synoptic wind.

Equations (2.17) take the form

∇2ψ + k2ψI = (γI − k2c)z, r < a,

∇2ψ + p2ψI = (γE − p2c)z, r > a.

}
(2.20)

The complete solution to (2.20) in polar coordinates s = r cos α, z = r sin α, is given
by

ψ =
γIa

k2

[
− J1(kr)

J1(ka)
+
r

a

]
sin α− cr sin α, r < a,

ψ = (c−U)a

[
−Y1(pr)

Y1(pa)
+
r

a

]
sin α− cr sin α, r > a,

 (2.21)

as explained in the Appendix. Here J1 and Y1 are first-order Bessel functions of the
first and second kind. The ranges of ka and pa and the formulation for γI are also
derived in the Appendix and are given by

0 < ka < 3.8317, 0 < pa < 2.03, (2.22)

and

γI = (c−U)kp
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)
= Nk

Y2(pa)

Y1(pa)

J1(ka)

J2(ka)
. (2.23)
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3. Potential temperature
In the region r < a using (2.12a) and (2.21) we get (see also Feliks 1988)

σ =
γ2
I a

k2

[
− J1(kr)

J1(ka)
+
r

a

]
sin α. (3.1)

Substituting (2.5) and (2.23) into (3.1) we obtain

θ =
θm

g

(c−U)2

a

{[
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]2 [
− J1(kr)

J1(ka)
+
kr

ka

]
sin α

}
. (3.2)

or

θ =
θm

g
N2a

{[
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]2 [
− J1(kr)

J1(ka)
+
kr

ka

]
sin α

}
. (3.3)

In the region r > a using (2.12a) and (2.21) we get

σ = γE(c−U)a

[
−Y1(pr)

Y1(pa)
+

(pr)

(pa)

]
sin α. (3.4)

Substituting (2.5) and (2.19a) into (3.4) we obtain

θ =
θm

g

(c−U)2

a

{
(pa)2

[
−Y1(pr)

Y1(pa)
+
pr

pa

]
sin α

}
=
θm

g
N2a

[
−Y1(pr)

Y1(pa)
+
pr

pa

]
sin α.

(3.5)

The expressions in the curly brackets in (3.2), (3.3) and (3.5) are non-dimensional and
describe the structure of the potential temperature as a function of ka and pa. In figure
2 this function is shown for different values of ka and pa in the non-dimensional
coordinates s/a, z/a. In cold fronts, as ka decreases and pa increases there is an
increase of the temperature drop in the front. Significant differences in the structure
of θ outside the front are observed as a function of pa. For pa < 1(Fr > 1) no
waves appear ahead of the front and the solution in this regime can be considered
supercritical, in the sense that the phase speed of the gravity waves is less than the
speed of the front. For pa > 1(Fr < 1) waves appear ahead of the front and this
regime can be considered as subcritical in the sense that the phase speed of the gravity
waves is greater than the speed of the front. These two regimes of the solution were
suggested by Haase & Smith (1989a, b). In their numerical simulations they show the
evolution of the solution in each regime. As pa increases further the horizontal and
vertical scales of the nonlinear wave decrease and its amplitude increases.

In cold fronts, unstable profiles of θ are obtained in the lower layers in our model,
particularly when the atmospheric stability is low. These unstable profiles are due
to lack of vertical friction in our model. Including this mechanism would result in
neutral profiles in the lower part of the front and consequently in strong horizontal
temperature gradients near the ground.

The maximum of |θ| in the front (r < a), θmax, is determined by the maximum of
the structure function [

J1(ka)

J2(ka)

]2 [
− J1(kr)

J1(ka)
+
kr

ka

]
. (3.6)

(Note that this structure function is different from that shown in figure 2 and (3.2)
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Figure 2. Isolines of the functional structure of the buoyancy and potential temperature for
various values of pa and ka = 2, as function of the non-dimensional moving coordinates s/a, z/a.

and (3.3)). The amplitude of this structure function is

D =
θm

g
N2a

[
Y2(pa)

Y1(pa)

]2

=
θm

g

(c−U)2

a

[
pa
Y2(pa)

Y1(pa)

]2

. (3.7)

In figure 3 the maximum of the structure function (3.6) in the cold front region is
shown as a function of ka (note that in r < a the structure function is only a function
of ka). To determine the value of ka one has to know the atmospheric stability, N,
and the speed of the front, c, relative to the undisturbed synoptic wind speed, U, the
height of the front, a, and the maximum drop of temperature due to the passage of
the front. From (2.19b) we find p and can calculate the amplitude D, (3.7), and using
figure 3 ka is determined.

The temperature drop due to the passage of the cold front is proportional to (c−U)2

and inversely proportional to the front height a (3.2). Some values of θmax, c, U,N,
and pa are given in table 1, as obtained from our model.

The integral of (3.2) over the front area is∫∫
θ dA =

θm

g

(c−U)2

a

{[
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]2 ∫ π/2

0

∫ a

0

[
− J1(kr)

J1(ka)
+
kr

ka

]
sin α dr dα

}
.

(3.8)
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Figure 3. The maximum potential temperature change due to the passage of the front, normalized
by D (equation (3.7)) as a function of ka.

Using the identity yJ1(y) = −yJ ′0(y) and integrating by parts we obtain

(c−U)2 =

πga

∫∫
θ dA

4θm

[
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]2 [(
J0(ka)

J1(ka)
H1(ka)−H0(ka)

)
π

2ka
+

1

3

] , (3.9)

where H0 and H1 are Struve functions.
From the mean value theorem for definite integrals, we have∫∫

θ dA = θ(x̄)
πa2

4
, (3.10)

where x̄ is a point in the front, and so

(c−U)2 =
4θ(x̄)ga

θm

[
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]2 [(
J0(ka)

J1(ka)
H1(ka)−H0(ka)

)
π

2ka
+

1

3

] , (3.11)

i.e. the square of the speed of the gravity current relative to the synoptic wind is
proportional to the mean drop of θ over the front area, θ(x̄), times the front height,
a, when ka and pa are kept constant. This result, within constant factors, is similar
to that found by Benjamin (1968) and Feliks (1988). In the real atmosphere the
relation (c − U)2 = F2∆θga/θm is widely used with a constant F2. Wakimoto (1982)
used F2 = 0.57, unlike the value 2 found by Benjamin (1969); for more discussion
on the value of F2 see Liu & Moncrieff (1996). We assume that the large difference
in F2 between different studies results from the different environmental conditions
as expressed in (3.11). From (3.5) we obtain that θ outside the front (r > a) is a
function of pa, c − U and a, but not a function of ka. On the other hand, θ inside
the front is also function of ka; increasing ka results in decreasing θ. Thus fronts
with the same speed and height can have different θ (as shown in figure 3). So the
speed of the front is also a function of the flow in the front, i.e. the balance between
the nonlinear advection term and the horizontal gradient of the buoyancy, as will be
discussed below in § 5. This result is different from that of Benjamin (1968), and Liu
& Moncrieff (1996); in both cases the speed of the front is only a function of the
temperature drop in the front and its height. This difference is due to the fact that the
flow in the front is motionless in the relative frame. Moncrieff & So (1989) examined
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gravity currents when flow and vorticity are observed in the cold front and showed
that the solution strongly depends on both flow and vorticity.

4. The winds
An analytical expression for the horizontal and vertical velocities can be obtained

from (2.6):

u− c = −∂ψ
∂z
− c = −

(
∂ψ

∂r

∂r

∂z
+
∂ψ

∂α

∂α

∂z

)
− c,

w =
∂ψ

∂s
=
∂ψ

∂r

∂r

∂s
+
∂ψ

∂α

∂α

∂s
,

 (4.1)

using (2.21) and the trigonometric identity arctan′(x) = 1 + (1 + x2). After some
mathematical manipulation we have:
for r < a

u− c = (c−U)

{
pa
Y2(pa)

Y1(pa)

1

J2(ka)

[
J1(kr)

kr
− J2(kr) sin2 α− J1(ka)

ka

]}
, (4.2)

w = (c−U)

{
pa
Y2(pa)

Y1(pa)

J2(kr)

J2(ka)
sin α cos α

}
; (4.3)

for r > a

u− c = (c−U)

{
pa

pr

Y1(pr)

Y1(pa)
− paY2(pr)

Y2(pa)
sin2 α− 1

}
, (4.4)

w = (c−U)

{
pa
Y2(pr)

Y1(pa)
sin α cos α

}
. (4.5)

The expressions in curly brackets in (4.2)–(4.5) are non-dimensional and describe
the structure of the horizontal and vertical velocities. The dimensional velocities are
proportional to c−U. In figures 4 and 5 the structure functions are shown for u− c
and w (horizontal and vertical respectively), in the non-dimensional coordinates s/a,
z/a, for different values of pa.

In the horizontal velocity, u, (figure 4) for small pa an abrupt change in u − c is
observed as we cross the front line r = a. As pa increases, the wind intensity inside
the front increases. As pa increases, the wind speed outside the front also increases.
For pa > 1, u has an undular pattern, most prominent above the front. The undular
pattern intensifies as pa increases. A return current is observed in the front at altitudes
above the front centre (z/a > 0.5). Some values of the maximum and minimum of
the horizontal wind speed in the front and outside of it are given in table 1.

In the vertical velocity (figure 5) upward motions are observed over the front. The
height at which the maximum is found is the boundary between the convergence and
divergence zones observed in the horizontal velocity. This maximum observed along
the ray begins at the origin at an angle of 45◦. For pa > 1 outside the front, cells of
upward and downward velocities are observed ahead of the front in the undulating
region. Upward cells are observed in the convergence zones and downward cells in
the divergence zones. Some values of the maximum speed of the vertical velocity
inside and outside the front are also given in table 1.
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U c |θmax| umax umin wmax wmin N × 103 (k2c− γI )× 105 γI × 105 γE × 106

(m s−1) (m s−1) (◦C) pa (m s−1) (m s−1) (m s−1) (m s−1) (s−1) (m−1 s−1) (m−1 s−1) (m−1 s−1)

−3 2 3.0 0.1 7.9 −7.9∗ 4.9 0 0.71 −5.0 6.6 0.1
−3 2 2.9 0.8 7.8 −6.9∗ 4.6 −0.8∗ 5.7 −4.8 6.4 6.5
−3 2 3.2 1.4 11 −12.3∗ 7.5 −6.6∗ 10.0 4.8 0.9 20.0

2 4 0.5 0.1 6.4 0.1∗ 2.0 0 0.71 0.6 2.6 0.04
2 4 3.9 1.8 11 −6.8∗ 5.5 −3.0 13.0 −4.5 7.8 1.3

Table 1. In this table the front height is a = 700 m, and ka = 2; umax, umin, wmax and wmin are the maximum and minimum of u and w respectively.
∗Values obtained outside the front.
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Figure 4. Isolines of the structure function of the horizontal velocity relative to the front speed for
various values of pa and ka = 2, as a function of the non-dimensional moving coordinates s/a, z/a.

5. The causes of propagation
The causes of propagation of the front and the nonlinear gravity wave ahead of it

are studied below in terms of the vorticity equation. An analytical expression for the
vorticity can be obtained from (2.1):
for r < a

ζ = ∇2ψ = −k2ψ + (γI − k2c)z. (5.1)

Substituting ψ form (2.21) into (5.1) we obtain

ζ = γIa
J1(kr)

J1(ka)
sin α =

(c−U)

a

{
pa
Y2(pa)

Y1(pa)
ka
J1(kr)

J2(ka)
sin α

}
; (5.2)

γI is given in (2.23).
For r > 0

ζ = ∇2ψ = −p2ψ + (γE − p2c)z. (5.3)

Substituting ψ from (2.21) into (5.3) we obtain

ζ =
c−U
a

{
(pa)2 Y1(pr)

Y1(pa)
sin α

}
. (5.4)

In the frontal region r < a the vorticity has a positive sign and its maximum is
obtained at α = π/2. The structure function of the vorticity is given in the curly
brackets of (5.2) and (5.4) and is shown in figure 6 for several values of pa. The
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Figure 5. Isolines of the structure function of the vertical velocity for various values of pa and
ka = 2, as a function of the non-dimensional moving coordinates s/a, z/a.

dimensional vorticity is proportional to (c−U)/a. As pa increases, the vorticity inside
the front increases. As pa increases the vorticity outside the front increases and for
pa > 1 cells of negative and positive vorticity appear ahead of the front in the
undulating region (figures 2, 4 and 5).

Examination of the vorticity equation (2.7) shows that two terms cause the changes
in the vorticity: the nonlinear advective term −J(ψ, ζ) and the horizontal gradient
of buoyancy (or potential temperature) ∂σ/∂x. A positive horizontal gradient of
the buoyancy tends to increase the vorticity, while a negative one decreases it. The
analytical expressions for these two terms in the front are

−J(ψ, ζ) = −J[ψ,−k2ψ + (γI − k2c)z] =
∂ψ

∂x
(k2c− γI ) = w(k2c− γI ), (5.5)

∂σ

∂x
=

∂

∂x
[γI (ψ + cz)] =

∂ψ

∂x
γI = wγI . (5.6)

The sum of the two terms gives

∂ζ

∂t
= wk2c (5.7)

Since w is positive everywhere in the frontal area, the right-hand side of (5.7) is
positive and causes the eastward propagation of the front.

The contribution of the nonlinear advective term to the vorticity depends on the
sign of k2c− γI . When this sign is negative, the advection term decreases the vorticity
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Figure 6. Same as figure 5 but for the vorticity.

and so inhibits the propagation of the front, and vice versa when its sign is positive.
To evaluate this coefficient we substitute (2.21) for γI :

k2c− γI =
kc

a

[
ka− (c−U)

c
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]
. (5.8)

Across the front, ∂σ/∂x > 0, and this term tends to propagate the front eastward.
Values of the coefficient (5.8) are given in figure 7 as a function of ka and (c−U)/c
for pa = 0.1 and 1.8 ((c−U)/c < 1 refers to U > 0 and (c−U)/c > 1 refers to U < 0).
Some values of k2c− γI are given in table 1. In most of the cases the advection term
has a negative sign due to advection of particles with low vorticity into a region of
higher vorticity, and so this term slows the eastward propagation of the front. When
the buoyancy in the front is very low the advection term is positive. This is due to
the advection of particles with high vorticity into the region of lower vorticity. Thus
the advection tends to speed up the propagation.

Outside the front, r > a, the analytical expressions for the relevant terms of the
vorticity equations are

−J(ψ, ζ) = −J[ψ,−p2ψ + (γE − p2c)] =
∂ψ

∂x
(p2c− γE) = w(p2c− γE) = wp2U, (5.9)

∂σ

∂x
=

∂

∂x
[γE(ψ + cz)] =

∂ψ

∂x
γE = wp2(c−U). (5.10)
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[
ka− (c−U)

c
pa
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)

]
, i.e. the coefficient of the nonlinear advective

term normalized by kc/a (see (5.8)) as a function of (c−U)/c and ka.

Here the sum of the two terms gives

∂ζ

∂t
= wp2c. (5.11)

Propagation direction here is more complex: the right-hand side of (5.10) has the
same sign as w. Examining figures 5 and 6 (for pa = 1.4 and 1.8) we find that the
cells of positive w overlap most of the parts where ζ decreases as function of x, and
cells of negative w overlap most of the parts where ζ increases as function of x. Thus
the right-hand side of (5.10) tends to speed up the propagation of the disturbance
of the gravity wave ahead of the front. This result can be deduced directly from
the functional properties of ζ which behaves like Y1(pr), (5.4), and that of w which
behaves like Y2(pr), (4.5). The nodes of Y2(pr) are very close to the extrema of Y1(pr).

The right-hand side of (5.9) depends on the sign of U. When U > 0, i.e. when the
synoptic wind is blowing in the direction of the propagation, this term has the same
sign as (5.10) and so tends to speed up the propagation of the disturbance ahead
of the front. When U < 0, i.e. the synoptic wind blows opposite to the direction of
propagation, this term has the opposite sign to that of (5.10) and so tends to slow the
propagation of the disturbance ahead of the front.

6. Concluding remarks
An analytical solution to the nonlinear equations of motion and the thermodynamic

energy equation describes a cold front propagating in stable atmosphere. This solution
assumes that the front has constant speed of propagation, and that it maintains its
structure. This is an extension of Feliks (1988), where a solution was found for unstable
and neutral atmospheres. This solution is different from the previous analytical solu-
tions of gravity currents in several aspects. Here, the shape of the front is prescribed,
and the density and velocity are determined by the solution and are continuous on the
interface; only their derivative is discontinuous. In the previous studies the density is
prescribed, the shape of the front and the velocity are determined by the solution, and
the velocity and density are discontinuous on the interface. In our solution there is
intensive circulation with strong vorticity inside the gravity current and the dynamics
is non-hydrostatic. Such circulation is observed in the atmospheric gravity currents.
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The solution has two regimes: (i) A supercritical regime when the Froude number
of the problem is Fr = (c−U)/Na = 1/pa > 1. The cold front is local and is similar
to that found in a neutral or unstable atmosphere. (ii) A subcritical regime when
Fr = 1/pa < 1. Ahead of the front a disturbance of the nonlinear gravity wave
is found. The horizontal scale of the wave decreases and its amplitude increases as
Fr decreases. The thermal, velocity, and vorticity fields can be described by non-
dimensional structure functions of the two parameters pa and ka. The amplitude of
the structure functions is proportional to (c−U)2/a for the thermal field, to (c−U)
for the velocity field and to (c−U)/a for the vorticity field.

The propagation is studied in terms of the vorticity equation. The horizontal
gradient of the buoyancy term always tends to propagate the cold front. The nonlinear
advection term (in most of the cases) tends to slow the propagation. The propagation
of the disturbance of nonlinear gravity waves ahead of the front (when Fr < 1) in
most of the domain is due to the buoyancy term. The nonlinear advection term tends
to slow the propagation when the synoptic wind blows in the opposite direction to
that of propagation, and vice versa when the synoptic wind blows in the direction
of propagation. The square of the speed of the front relative to the synoptic wind is
proportional to

2θ(x̄)

θm
ga,

where θ(x̄) is the mean potential temperature drop across the front area and a is the
front height. We find that the square of the speed is also strongly dependent on the
environmental conditions in the front. This result is widely used in the interpretation
of observed gravity currents. The constant of proportionality varies greatly between
different studies. We attribute these differences to the different environmental condi-
tions in the observations. Moncrieff & So (1989) also found a strong dependence of
the gravity current speed on the flow and vorticity in the front. Liu & Moncrieff (1996)
assumed no flow in the front; thus they found faster propagation, since the tendency
of the nonlinear advection to slow the propagation is absent from their model.

The analytical solution presented here does not include important physical processes
such as eddy diffusivity. Including such processes will probably change the unstable
thermal field in the lower part of the front to neutral stratification. Changing the slip
condition in the lower boundary to a non-slip condition will affect the velocity field
near the ground and can influence the speed of the front, as shown by Haase & Smith
(1989a, b).

The stability regimes of this analytical solution to small perturbations are left for
further study.

I am grateful to Dr Y. Alexander for careful reading of the manuscript.

Appendix
In polar coordinates (2.20) becomes

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂r2
+ k2ψ = (γI − k2)r sin α, r < a,

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂r2
+ p2ψ = (γE − p2)r sin α, r > a.

 (A 1)
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A particular solution of (A 1) is

ψNH =
γ − l2c
l2

r sin α. (A 2)

where l = k or p and γ = γI or γE . The solution of the homogeneous equation is
obtained by the separation of variables:

ψH = f(r)h(α),

r

f

∂

∂r

(
r
∂f

∂r

)
+ r2l2 = 1 = −1

h

∂2h

∂α2
.

 (A 3)

Thus

h(α) = sin α, f(r) = AJ1(lr) + BY1(lr) (A 4)

where J1 and Y1 are first order Bessel functions of the first and second kind.
For r < a B = 0 since as r → 0 Y1(lr)→ −∞, i.e.

ψ =

(
AIJ1(kr) +

γI − ck2

k2
r

)
sin α (A 5)

Utilizing the boundary condition on r = a

ψ + cz = ψ + ca sin α = 0, (A 6)

we obtain

AI = − γI
k2

a

J1(ka)
, (A 7)

ψ =
γIa

k2

[
− J1(kr)

J1(ka)
+
r

a

]
sin α− cr sin α. (A 8)

For r > a from (A 3) and (A 4) we obtain

ψ =

(
AEJ1(pr) + BEY1(pr) +

γE − cp2

p2
r

)
sin α. (A 9)

In §A.1 we show that AE = 0 and

ψ =

(
BEY1(pr) +

γE − cp2

p2
r

)
sin α. (A 10)

Utilizing the boundary condition on r = a, (A 6), we obtain

BE = −γE
p2

a

Y1(pa)
= −(c−U)

a

Y1(pa)
, (A 11)

ψ = (c−U)a

[
−Y1(pr)

Y1(pa)
+
r

a

]
sin α− cr sin α. (A 12)

From (A 11) and (A 12) we conclude that[
−Y1(pr)

Y1(pa)
+
r

a

]
> 0⇒ 0 6 pa 6 2.03. (A 13)

It is clear that ψ is continuous on r = a. We require continuity for u and w and
thus ∂ψ/∂r must be continuous. After some mathematical manipulation, using the
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identities for the derivatives, Y ′1 (y) = Y1(y)/y−Y2(y), J ′1(y) = J1(y)/y−J2(y) we obtain

γI
a

k

J2(ka)

J1(ka)
= (c−U)ap

Y2(pa)

Y1(pa)
= Na

Y2(pa)

Y1(pa)
(A 14)

or

γI = (c−U)kp
Y2(pa)

Y1(pa)

J1(ka)

J2(ka)
= Nk

Y2(pa)

Y1(pa)

J1(ka)

J2(ka)
. (A 15)

For pa � 1, i.e. for the case when the atmosphere tends to neutral stability, and
utilizing the approximation (A 24) below we obtain

γI = (c−U)
2k

a

J1(ka)

J2(ka)
. (A 16)

This result is the same as obtained by Feliks (1988) for a neutral atmosphere, and
shows that the extension of the theory to a stable atmosphere is continuous.

In a cold front, the air in the front is cooler than the air ahead of it and so σ in
r < a is lower (more negative) than σ in r > a. Thus we conclude from (2.12) and
(2.13) that γI > 0, and consequently, we can further conclude from (A 15) and (A 16)
that

J1(ka) > 0, 0 < ka < 3.8317. (A 17)

It is important to note that (A 17) is the only range of ka which is possible for a cold
front. For other ranges of ka where J1(ka)/J2(ka) > 0 for cold fronts, ψ+ cz changes
its sign in 0 < ra < ka, but this contradicts (2.13).

A.1. Demonstration that AE = 0

From (A 9) we have the general solution for the outer region r > a

ψ =

(
AEJ1(pr) + BEY1(pr) +

γE − cp2

p2
r

)
sin α. (A 18)

Using the boundary condition (A 6) on r = a we find

AEJ1(pa) + BEY1(pa) +
γE

p2
a = 0. (A 19)

The continuity of u and w on r = a is consistent with the continuity of ∂ψ/∂r. Thus
from (A 18) and (A 8) we obtain

pAE

(
J1(pa)

pa
− J2(pa)

)
+ pBE

(
Y1(pa)

pa
− Y2(pa)

)
+
γE

p2

= kAI

(
J1(ka)

ka
− J2(ka)

)
+
γI

k2

= −J2(ka)
kaγI

k2J1(ka)
. (A 20)

Multiplying (A 20) by a we get

AEJ1(pa) + BEY1(pa) +
γE

p2
a− pa[AEJ2(pa) + BEY2(pa)] = −ka γI

k2

J2(ka)

J1(ka)
. (A 21)

Subtracting (A 21) from (A 19) we obtain

AEJ2(pa) + BEY2(pa) = ka
γI

k2

J2(ka)

J1(ka)
− γE

p2
a. (A 22)
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From (A 19) and (A 22) we find

AE =

(
ka
γI

k2

J2(ka)

J1(ka)
− γE

p2
a

)
Y1(pa)− γE

p2
aY2(pa)

J2(pa)Y1(pa)− J1(pa)Y2(pa)
. (A 23)

For pa� 1 we can use the following approximations:

J1(pa) ≈ 1

Γ(2)

pa

2
, J2(pa) ≈ 1

Γ(3)

(pa)2

4
,

Y1(pa) ≈ Γ(1)

π

2

pa
, Y1(pa) ≈ −Γ(2)

π

4

(pa)2
.

 (A 24)

Thus

AE ≈ −
−
(
kaγI

k2

J2(ka)

J1(ka)
− γE

p2
a

)
Γ(1)

π

2

pa
+
γE

p2
a

Γ(2)

π

4

(pa)2

− 1

Γ(3)

(pa)2

4

Γ(1)

π

2

pa
+

1

Γ(2)

pa

2

Γ(2)

π

4

(pa)2

. (A 25)

From (2.19a) and (A 25) we obtain

AE ≈ −
−
(
kaγI

k2

J2(ka)

J1(ka)
− (c−U)a

)
Γ(1)

π

2

pa
+ (c−U)a

Γ(2)

π

4

(pa)2

−Γ(1)

Γ(3)

pa

2π
+

2

pa

. (A 26)

As pa→ 0, i.e. the atmosphere stratification tends to neutral. (A 26) and (A 9) tend to
∞. But when N2 → 0 from the unstable stratification ψ is finite as shown by Feliks
(1988). When AE = 0 and when pa → 0 the solution (A 12) tends to the solution of
Feliks (1988) (above (A 16)) etc. The continuity of the solution into the stable regime
is possible only if AE = 0.
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